
Bipin/Sona

March 8, 2023

Errata ABI Design for EL3

2 © 2020 Arm Limited

Agenda

• Brief introduction to Errata, Errata ABI
• Errata ABI calls supported by EL3
• Errata ABI discovery
• Pseudo code on how OS uses the errata ABI
• Design considerations
• ABI functions and inputs expectations
• Base Data Structure and CPU specific arrays
• High level sequence
• Implementation -> both generic and special case(non-arm interconnect

IP)
• Code overview
• Testing

3 © 2020 Arm Limited

Errata ABI Calls supported by EL3
• CPU erratum is identified by the CPU_erratum_ID identifier, a unique 32-bit value that identifies the

erratum on the specific CPU .

• The errata ABI complies with SMCCCv1.1 calling convention or higher

• Support for all the following ABI functions are mandatory from Errata ABI spec v1.0, with lower EL
being the caller, will need to support from within EL3.

• The following functions are called using SMC

• EM_VERSION (FID = 0x8400_00F0 = FID0)

• EM_FEATURES (FID= 0x8400_00F1 = FID1)

• EM_CPU_ERRATUM_FEATURES (FID =0x8400_00F2 = FID2)

4 © 2020 Arm Limited

ABI Discovery, Caller from lower EL (e.g. EL1)

EM_VERSION(W0=FID0)
W0 < 0

NOT SUPPORTED

Start

W0 >=0
SUPPORTED

EM_FEATURES(W0=FID1,
W1=em_func_id)

End

W0 < 0
NOT SUPPORTED

Function(FID)
not supported

End

W0 > 0
Function(FID)

implemented with
specific capabilities

W0 = 0
Function(FID)
implemented

5 © 2020 Arm Limited

ABI Discovery(Cont..)

EM_CPU_ERRATUM_FEATURES
(W0=FID2,

W1=cpu_erratum_id,
W2=forward_flag)

End

W0 > 0
Function(FID2)

implemented with
specific capabilities

Return (W0)

Name Value

HIGHER_EL_MITIGATION 3

NOT_AFFECTED 2

AFFECTED 1

SUCCESS 0

NOT_SUPPORTED -1

INVALID_PARAMETERS -2

UNKNOWN_ERRATUM -3

Return codes for EM_CPU_ERRATUM_FEATURES()

The return value of
EM_CPU_ERRATUM_FEATURES
is valid only for the calling CPU,
the call must be performed on
each CPU that the OS knows

can be affected by a particular
erratum.

6 © 2020 Arm Limited

How OS uses the ABI?

bool need_cpu_erratum_local_wa(u32 cpu_erratum_id_list[], int num_erratum_entries)
{

int forward_flag = 0;
for (int idx = 0; idx < num_erratum_entries; idx++) {

u32 cpu_erratum_id = cpu_erratum_id_list[idx];
int ret = smccc_call(EM_CPU_ERRATUM_FEATURES, cpu_erratum_id, forward_flag);

switch (ret) {
case EM_HIGHER_EL_MITIGATION:
case EM_NOT_AFFECTED: // Return value when the erratum has been mitigated in hardware

return false;
case EM_UNKNOWN_ERRATUM: // Firmware does not recognise the cpu_erratum_id on this CPU.

continue; // OS may decide to implement the workaround if applicable
case EM_AFFECTED: // The CPU is affected by the erratum, the OS should deploy a workaround.

return true;
}

}
return true;

}

7 © 2020 Arm Limited

Design considerations for Errata ABI support

• Inputs
• Inputs to the ABI

– All inputs for the ABI functions received through SMC conduit
– MIDR value to be read (e.g. read_MIDR_EL1)

• Build/Compile time options
– CPUs in the platform

▪ to compile applicable pre-initialized arrays

• Data structure needed & sizing

• No dynamic memory allocation

• Static initialization of data structures

• Performance/memory size

8 © 2020 Arm Limited

Design Considerations

• CPU erratum data structures will be populated statically for every CPU(which has one or more
erratum) supported in TF-A

• This will introduce a new file which need to be populated with every errata implementation to add an
extra entry in the CPU specific array of data structures

• All erratum IDs applicable for a given CPU will be populated in ascending order in the newly introduced
array of structures. This enables binary search to look up for the erratum ID within the array

• Assume the data structure arrays are compiled in, based on applicable CPUs within the platform, using
build flags

• Current ABI design doesn’t consider Split errata that is mitigated in multiple ELs, but the expectation is
it could be supported with minimum changes to the data structure if it is supported in future

• For return of UNKNOWN_ERRATA(-3) for EM_CPU_ERRATUM_FEATURES, OS will implement erratum if
applicable. This is because TF-A doesn’t hold all Cat B errata info for every CPU so far but only the ones
with the mitigation in EL3. So, firmware won’t have the full list.

9 © 2020 Arm Limited

ABI Functions and Input Expectations for SMC call
• The following functions are called using SMC and hence the incoming register values are expected as mentioned in

the ABI spec

• EM_VERSION (W0=FID=0x8400_00F0)

• EM_FEATURES (W0 = FID=0x8400_00F1,
W1=em_func_id = 0x8400_00F2) // Currently the only supported erratum features function is

EM_CPU_ERRATUM_FEATURES, any other em_func_id value
will return “NOT_SUPPORTED”

• EM_CPU_ERRATUM_FEATURES (W0=FID=0x8400_00F2,
W1=CPU_erratum_ID, // Erratum ID
W2=forward_flag) // Forward flag, MBZ when called from EL1

10 © 2020 Arm Limited

High level sequence

1. Build flow includes the data structure for CPUs in the platform

2. Part of the initialization in BL31, the data structure is initialized to external memory

3. After control is transferred to EL1, at some point OS does the discovery process , if the ABI is supported
(as mentioned in earlier flow chart)

4. If the ABI is supported, OS calls EM_CPU_ERRATUM_FEATURES with the errata ID

5. Based on the MIDR of the calling CPU and errata ID, do a binary search in the correct CPU data
structure array to determine if the errata ID is recognized

6. If errata ID matches, compare the version for which errata is applicable and do the appropriate return
status

7. OS uses the return value and take appropriate action. e.g., applying the mitigation for errata that needs
to be applied at a lower EL

8. Repeat steps 4 to 7 for all applicable erratas.

11 © 2020 Arm Limited

Data Structure

struct em_cpu {
unsigned int em_errata_id;
unsigned char em_rxpx_lo; // Lowest revision errata is applicable e.g. r0p1 = 0x1, r0p1 = 0x1, r1p2 =0x12
unsigned char em_rxpx_hi; // Highest revision errata is applicable e.g. r0p1 = 0x1, r0p1 = 0x1, r1p2 =0x12
unsigned char hardware_mitigated; // version number if erratum is fixed in hardware
bool hw_flag; // flag to indicate erratum is fixed in hardware
bool arm_interconnect; // Flag to indicate if platform uses arm or non-arm interconnect
bool platform_affected; // Flag to indicate if platform is affected or not

};

e.g., Use the above data structure to build an array of struct for each CPU to include all applicable errata.

struct em_cpu_list{
unsigned long cpu_pn; /* field to hold cpu specific part number defined in midr reg*/
struct em_cpu cpu_errata_list[MAX_SIZE];

};

12 © 2020 Arm Limited

• struct em_cpu_list cpu_list[] = {
#if CORTEX_A78_H_INC
{

.cpu_pn = CORTEX_A78_MIDR,

.cpu_errata_list = {
{1688305, 0x00, 0x10},
{1821534, 0x00, 0x10},
{2395406, 0x00, 0x12},

#if ERRATA_NON_ARM_INTERCONNECT
{2712571, 0x00, 0x12, 0x00, false, \
ERRATA_NON_ARM_INTERCONNECT, ERRATA_A78_2712571},

},
#endif
.
.
…. ………….N such cpu entries

};

Refer : https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/19835/1/services/std_svc/errata_abi/errata_abi_main.c

Flag enabled/disabled in platform make file

Flag to indicate non arm interconnect IP.

13 © 2020 Arm Limited

• Flow:EM_CPU_ERRATUM_FEATURES(W0=FID2,
W1=cpu_erratum_id,
W2=forward_flag)

(If forward_flag == 0

and Calling EL = EL1)

or

(If forward_flag!= 0

and Calling EL = EL2)

1:

Return Invalid Parameters
No

Yes

1:

Extract cpu part number,
revision and variant

Is part
number in

the cpu list?
2:

Return Unknown Erratum

Yes

No

High level sequence flow chart

14 © 2020 Arm Limited

• 1

2:

Binary search for errata ID in
the array index with matching

part number.

Errata ID
found in list?

End search, return
Unknown Erratum

3:

Yes

No

3:

Is (rxpx extracted >=
HW_mitigated
version) and
(hardware

mitigated flag == 1)

End search, return
Not Affected

Yes

No

Is (rxpx extracted >=
rxpx_low version)

and (rxpx extracted
<= rxpx_high

version)

(ERRATA_NON_AR
M_INTERCONNECT_

FLAG == 1)

Yes

No

End search, return
Affected

No

End search, return
Higher EL
Mitigation

CPU Specific
Errata Flag == 1

No

4:

4:

4:

Yes

Yes

15 © 2020 Arm Limited

Implementation
• Generic implementation:

• Link to the implementation : https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/19835

-> Build flag to include feature -> ERRATA_ABI_SUPPORT = 1

• Special case implementation:
– -> Build flag for platform’s that do not have an arm interconnect ->

ERRATA_NON_ARM_INTERCONNECT = 1
– -> Specific flags for non-arm interconnect IP’s, these flags can be enabled in the platform make file,

based on whether the specific cpu errata needs to be enabled or not. These errata are not
implemented in EL3.

– -> Currently around 9+ cpu erratas included.

16 © 2020 Arm Limited

Array of CPU structures
• Refer : https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/19835/1/services/std_svc/errata_abi/errata_abi_main.c

• …/platform.mk · Gerrit Code Review (trustedfirmware.org)

Platform.mk file -> FVP

https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/19835/1/services/std_svc/errata_abi/errata_abi_main.c
https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/19835/1/plat/arm/board/fvp/platform.mk

17 © 2020 Arm Limited

Non-Arm Interconnect flags

Platform.mk file -> FVP

Cpu_list

18 © 2020 Arm Limited

List of errata’s that affect platforms with non-arm interconnect

Makalu-ELP / Cortex-A715 - 2701951
• Arm Cortex-X3 (MP141) Software Developer Errata Notice

Demeter / Neoverse V2 - 2719103
• Arm Neoverse V2 (MP158) Software Developer Errata Notice

Matterhorn / Cortex-A710 - 2701952
• Arm Cortex-A710 (MP117) Software Developer Errata Notice

Matterhorn-ELP / Cortex-X2 - 2701952
• Arm Cortex-X2 (MP121) Software Developer Errata Notice

Perseus/Neoverse N2 - 2728475
• Arm Neoverse N2 (MP128) Software Developer Errata Notice

Zeus / Neoverse V1 - 2701953
• Arm Neoverse V1 (MP076) Software Developer Errata Notice

Hercules / Cortex-A78 - 2712571
• Arm Cortex-A78 (MP102) Software Developer Errata Notice

Hercules-AE / Cortex-A78AE - 2712574
• Arm Cortex-A78AE (MP105) Software Developer Errata Notice

HerculesPrime / Cortex-A78C - 2712575
• Arm Cortex-A78C (MP154) Software Developer Errata Notice

Hera / HeraPrime
• Not Supported in TF-A

https://developer.arm.com/documentation/SDEN2055130/latest
https://developer.arm.com/documentation/SDEN2332927/latest
https://developer.arm.com/documentation/SDEN1775101/latest
https://developer.arm.com/documentation/SDEN1775100/latest
https://developer.arm.com/documentation/SDEN1982442/latest
https://developer.arm.com/documentation/SDEN1401781/latest
https://developer.arm.com/documentation/SDEN1401784/latest
https://developer.arm.com/documentation/SDEN1707912/latest
https://developer.arm.com/documentation/SDEN2004089/latest

19 © 2020 Arm Limited

Testing
• Unit Testing : https://gerrit.oss.arm.com/c/trusted-firmware/tf-a-unit-tests/+/252281

• TFTF Testing : https://gerrit.oss.arm.com/c/trusted-firmware/tf-a-tests/+/245954

https://gerrit.oss.arm.com/c/trusted-firmware/tf-a-unit-tests/+/252281
https://gerrit.oss.arm.com/c/trusted-firmware/tf-a-tests/+/245954

Confidential © 2020 Arm Limited

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה

	Slide 1
	Slide 2: Agenda
	Slide 3: Errata ABI Calls supported by EL3
	Slide 4: ABI Discovery, Caller from lower EL (e.g. EL1)
	Slide 5: ABI Discovery(Cont..)
	Slide 6: How OS uses the ABI?
	Slide 7: Design considerations for Errata ABI support
	Slide 8: Design Considerations
	Slide 9: ABI Functions and Input Expectations for SMC call
	Slide 10: High level sequence
	Slide 11: Data Structure
	Slide 12
	Slide 13: High level sequence flow chart
	Slide 14
	Slide 15: Implementation
	Slide 16: Array of CPU structures
	Slide 17: Non-Arm Interconnect flags
	Slide 18: List of errata’s that affect platforms with non-arm interconnect
	Slide 19: Testing
	Slide 20

