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What Are the Improvements
Write in your subtitle here

• The tf-m-tests repo
• Test Framework
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The tf-m-tests repo

• A new tf-m-tests repo has been created under TF-M
• Intended to move in all the TF-M test codes

tf-m-tests

trusted-firmware-m

test/

CMSIS_5

RTX CMSIS

app/

test/

app/
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Migration of the test codes

• Phase 1
• Move the codes as is
• Only necessary changes to pass compilation

• Phase 2
• Refine the build system
• Refine the file structure
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Test Framework
Introducing Unity + CMock

• Unity: Opensource test framework for C
• CMock: framework of automated mock and stub generation for C
• https://github.com/ThrowTheSwitch

Test Cases

Unity CMock

Test Cases

TF-M Test Framework

Note: Mocks are optional for test cases
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Test Framework
Why do we need a new one

• The current test framework
• Only has the limited automation for developing
• Only a few test assertions
• Does not support mock or stub
• Not so friendly for test developers
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Test Framework
Changes after using Unity
• Simpler code for test case and more readability
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Test Framework
Changes after using Unity

Developer focus

Tools generated codes

Don’t have to write the following codes
• Easy development
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Test Framework
The CMock framework

• Mock framework lets you control the behaviors of the modules that your main test 
object interacts with

Test Cases

Module B

Module A Mocked 
Module A

Mock APIs

Mock APIs:
void moduleAFunc_ExpectAndReturn(int a, int b, int toReturn);
void moduleAFunc_ExpectAndThrow(int a, int b, EXCEPTION_T error);
void moduleAFunc_IgnoreAndReturn(int toReturn);

Module A interface:
int moduleAFunc(int a, int b)

void test_case_1(void)
{

int a =1, b = 2, c;
moduleAFunc_ExpectAndReturn(1, 2, 3);
c = moduleAFunc(a, b); // c is 3
TEST_ASSERT(c = 3);

}
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Test Framework
Why Unity

Pros

• It’s pure C
• Automation scripts
• Mock feature
• Easy integration – only 3 source files for 

each(Unity & CMock)

Comparison to other (a few popular ones) 
frameworks
• Google Test – Aims for C++
• CppUTest – Written in C++, and test cases in C++
• Check - only supports a handful of assertions
• Cmocka - no scripts and requires the standard C 

library

Cons
• Extra build env ruby – the automation tools are 

written in ruby

Unity users:
• a:Fr
• mbed-OS
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Unity + CMock
How are they managed

• MIT License – permissive license
• Import the source code as local copy

• Less than 10 files, include source codes and scripts
• Easy for customization
• Won’t upgrade frequently
• Won’t upstream

• Security – no considerations as test purpose only
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