
© 2020 Arm Limited (or its affiliates)

Kevin Peng
July 2020

TF-M Tests 
Improvements



2 © 2020 Arm Limited (or its affiliates)

What Are the Improvements
Write in your subtitle here

• The tf-m-tests repo
• Test Framework



3 © 2020 Arm Limited (or its affiliates)

The tf-m-tests repo

• A new tf-m-tests repo has been created under TF-M
• Intended to move in all the TF-M test codes

tf-m-tests

trusted-firmware-m

test/

CMSIS_5

RTX CMSIS

app/

test/

app/



4 © 2020 Arm Limited (or its affiliates)

Migration of the test codes

• Phase 1
• Move the codes as is
• Only necessary changes to pass compilation

• Phase 2
• Refine the build system
• Refine the file structure



5 © 2020 Arm Limited (or its affiliates)

Test Framework
Introducing Unity + CMock

• Unity: Opensource test framework for C
• CMock: framework of automated mock and stub generation for C
• https://github.com/ThrowTheSwitch

Test Cases

Unity CMock

Test Cases

TF-M Test Framework

Note: Mocks are optional for test cases



6 © 2020 Arm Limited (or its affiliates)

Test Framework
Why do we need a new one

• The current test framework
• Only has the limited automation for developing
• Only a few test assertions
• Does not support mock or stub
• Not so friendly for test developers



7 © 2020 Arm Limited (or its affiliates)

Test Framework
Changes after using Unity
• Simpler code for test case and more readability



8 © 2020 Arm Limited (or its affiliates)

Test Framework
Changes after using Unity

Developer focus

Tools generated codes

Don’t have to write the following codes
• Easy development



9 © 2020 Arm Limited (or its affiliates)

Test Framework
The CMock framework

• Mock framework lets you control the behaviors of the modules that your main test 
object interacts with

Test Cases

Module B

Module A Mocked 
Module A

Mock APIs

Mock APIs:
void moduleAFunc_ExpectAndReturn(int a, int b, int toReturn);
void moduleAFunc_ExpectAndThrow(int a, int b, EXCEPTION_T error);
void moduleAFunc_IgnoreAndReturn(int toReturn);

Module A interface:
int moduleAFunc(int a, int b)

void test_case_1(void)
{

int a =1, b = 2, c;
moduleAFunc_ExpectAndReturn(1, 2, 3);
c = moduleAFunc(a, b); // c is 3
TEST_ASSERT(c = 3);

}



10 © 2020 Arm Limited (or its affiliates)

Test Framework
Why Unity

Pros

• It’s pure C
• Automation scripts
• Mock feature
• Easy integration – only 3 source files for 

each(Unity & CMock)

Comparison to other (a few popular ones) 
frameworks
• Google Test – Aims for C++
• CppUTest – Written in C++, and test cases in C++
• Check - only supports a handful of assertions
• Cmocka - no scripts and requires the standard C 

library

Cons
• Extra build env ruby – the automation tools are 

written in ruby

Unity users:
• a:Fr
• mbed-OS



11 © 2020 Arm Limited (or its affiliates)

Unity + CMock
How are they managed

• MIT License – permissive license
• Import the source code as local copy

• Less than 10 files, include source codes and scripts
• Easy for customization
• Won’t upgrade frequently
• Won’t upstream

• Security – no considerations as test purpose only



© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धɊवाद
شكرًا

ধনƟবাদ 
תודה



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affiliates)


