
1

TF-RMM Live Activation
Design Discussion

12/06/2025

Andre Przywara, Manish Badarkhe, Soby

Mathew

2

Live Firmware Activation overview

• An Arm spec (DEN0147) describing discovery and activation of updated firmware components

• Allows firmware updates without a reboot

• Describes an interface between an LFA client and an LFA agent

• LFA agent lives in EL3 runtime, so typically TF‐A BL31

• Defines SMCCC compliant functions:
o Detection: LFA_VERSION, LFA_FEATURES

o Firmware discovery: LFA_GET_INFO, LFA_GET_INVENTORY
o Firmware activation: LFA_PRIME, LFA_ACTIVATE, LFA_CANCEL

• Firmware activations might require CPU rendezvous
o To prevent accidental calls into the to-be-updated firmware

o To allow every CPU to (re-)initialise during the update process

• Spec is not concerned about the image updates itself, just the activation

3

TF-RMM live update

• Early example of a live‐updatable component

• Looks like a nice target, since it does not carry much state
o VCPU and guest state memory belongs to normal world

o Pointers are passed in on every RMI call

o Only a very few data structures to preserve: granule array, VMID array

• Mostly relays requests from normal world, no "life of its own"

• Constraints: (shared) data structures must stay compatible

• Expectation: Live updates only for small/minor revisions (fixes only?)

4

Current TF-RMM carveout usage (on FVP)

5

Naïve RMM update scenario

6

TF-RMM changes to allow live activation

• RMM gets (very limited) support for memory reservation from EL3
o Only in the RMM setup phase

o Before the MMU gets enabled, so mappings stay fixed

o Only reservations, no freeing

• Allows for keeping global data persistent
o So data can be shared quite naturally

• Allows for getting local memory for a particular core
o To address NUMA requirements

• Allows for sizing memory regions
o To scale with the number of cores

o To scale with the amount of DRAM

• Per-CPU data structure as an anchor point

• Contains pointers (addresses) to global data structures for all persistent data

• Address of this per-CPU struct is passed between EL3 and RMM

7

Naïve RMM update scenario

8

EL3-RMM communication
changes :
Rationale and details

9

RMM based allocation complexities

• Design choice for LFA in RMM –
• Instead of migrating data from the old RMM instance to the new one during a live firmware update, the design

proposes reusing objects already allocated in the old RMM.

• This requires a separate memory pool, external to the RMM image itself, to store RMM state that must persist

across the update.

• An alternative approach is describing this pool of memory via manifest and let RMM manage the

memory which has some complexities.

• Bootstrapping complexity, particularly when Memory is needed before the C runtime is initialized.
• A solution is to use a temporary stack for the primary CPU during early initialization.

• Allocating memory for secondary CPUs before the MMU is enabled
• Mutual exclusion becomes an issue.

• Using locks (e.g., like bakery-locks) in this early stage is complicated.

• A cleaner approach: Have the primary CPU allocate and partition memory ahead of time for each

secondary, and pass this pre-allocated memory via a structured hand-off.
• Note that RMM would still need to cater for hot spare cores/redundant cores which are not used typically, but can

be brought online when a regular core fails. Typically these are hidden as platform specific implementation in EL3.

10

Complexities Continued

• NUMA or multi-chip needs special handling
▪ EL3 would need to describe NUMA/Multi Chip topology to RMM

with the NUMA node information via manifest.
▪ NUMA node would describe Realm PAS carveout for use by RMM.

▪ RMM should use this data to allocate memory from the
appropriate node-local carveout.
▪ The primary CPU would need to preprocess and pass summarized

topology/memory data to the secondary CPUs in an assembly

friendly structure/table. The secondaries would need to look up this

table using MPIDR as a key.

• Need RMM to migrate allocation info for each pool to new

RMM or embed the same within the data pool.
▪ Chicken and egg situation if memory needs to be allocated prior to

init of memory allocation data in new RMM.

11

EL3 assisted mem reserve from Realm carveout

• Using an EL3 service to reserve memory in the Realm PAS carveout

reduces design complexity and minimizes the need for platform-specific

implementations in RMM.

• Hence the current proposal is to introduce an EL3 RMMD service to

"reserve" memory from the Realm PAS carveout based on request from

RMM.
• There will be no free() support , hence overhead associated with

traditional memory mgmt is absent.

• EL3 will not map this memory in its own Stage 1 MMU nor try to

access this memory.

• Any misuse or incorrect handling of the allocation does not impact EL3
security.

• The proposal is that RMM allocates all required memory as part of boot
• PCPU memory will be allocated as part of each individual CPU boot

• Global memory will be allocated during primary CPU boot.

• Failure in boot phase if the platform does not provision adequate memory.

12

Proposed NUMA handling for local (PCPU) RMM data

1 2

3 4

5 6

7 8

RMM

carveout

Root SRAM

RMM

carveout

Root SRAM

Chip 0 Chip 1

• EL3 creates Realm PAS carveout in the memory

nodes.

• EL3 firmware, if it has support for NUMA, will locate

its local data to corresponding memory nodes.

• When RMM makes a request to reserve memory for

its PCPU data, EL3 reserves memory Realm

carveout local to the CPU which made the request.
• This can leverage NUMA framework in TF-A,

eliminating the need for EL3 to perform explicit runtime

topology lookups. As a result, the implementation will

be simple.

13

RMM_RESERVE_MEM

Name Register Bits Type Description

FID x0 [63:0] UInt64 Command FID

Size x1 [63:0] UInt64 Size in bytes

Alignment x2 [63:56] UInt8 Alignment requirement in power of 2. A value

of 16 would return a 64 KB aligned base

address

Flags x2 [31:0] UInt32 [0]: determine whether the allocation

should allocate from a pool close to the

calling CPU.

[31:1]: reserved

Name Register Bits Type Description

Result x0 [63:0] UInt64 Error code {E_RMM_INVAL, E_RMM_UNK,

E_RMM_NOMEM, E_RMM_OK}

Address x1 [63:0] UInt64 PA of start of reserved mem

Input values

Output values

14

Enhance Boot protocol for RMM

• EL3 is expected to facilitate LFA of RMM.

• RMM will maintain a structure for global and PCPU allocations.

This will need to be passed from old RMM to new RMM.

• Propose to add a `cookie` in boot interface
• Cold boot uses [x0 – x3] , add x4 as cookie.

• Warm boot uses [x0], add x1 as cookie.

• On successful RMM boot, returns `cookie` in x1 back to EL3.

• EL3 keeps the `cookie` on per-CPU basis and passes it back to

RMM for next boot – either next warmboot or LFA update boot.
• Initial value of cookie is 0.

• RMM implementation detail:
• RMM populates the global and PCPU allocations and passes address

of per_cpu_data object as cookie back to EL3 when boot completes.

• If the value of the cookie is non-zero, RMM will skip initialization and

bootstrap from the provided per_cpu_data structure

15

LFA SMC Implementation
in EL3

16

LFA Flow – Firmware Discovery

17

LFA Flow – Priming Firmware Component

18

LFA Flow – Activating Firmware Component

Thank You

20

Backup

21

LFA SMC Table (1/3)

SMC Name Description Inputs Outputs Return Codes

LFA_VERSION Retrieve the LFA
version

None Major, Minor version LFA_SUCCESS,

LFA_NOT_SUPPO
RTED

LFA_FEATURES Use to retrieve the
existence of
functions in the
LFA ABI.

FID None LFA_SUCCESS,

LFA_NOT_SUPPO
RTED

LFA_GET_INFO Retrieves the
number of
components under
the supervision of
LFA

FID,
lfa_info_selector=0

lfa_num_components LFA_SUCCESS

LFA_GET_INVENTORY To discover the
Firmware
component
managed by LFA

FID,
fw_seq_id

UUID_0,

UUID_1,

Flags -

1. Activation capable
2. Activation pending
3. May_reset_cpu
4. cpu_rendezvous_op

tional

LFA_SUCCESS,

LFA_INVALID_PAR
AMETERS,

LFA_WRONG_STA
TE.

22

LFA SMC Table (2/3)

SMC Name Description Inputs Outputs Return Codes

LFA_PRIME To prepare platform for
live activation of the given
component

FID,

fw_seq_id

Flags -

1. call_again

LFA_SUCCESS,

LFA_AUTH_ERROR,

LFA_NO_MEMORY,

LFA_DEVICE_ERROR,

LFA_WRONG_STATE,

LFA_BUSY,

LFA_PRIME_FAILED
LFA_CANCEL To abort firmware

activation process during
prime or activate stages

FID,

fw_seq_id

LFA_SUCCESS,

LFA_BUSY,

LFA_INVALID_PARAMETERS

23

LFA SMC Table (3/3)
SMC Name Description Inputs Outputs Return Codes

LFA_ACTIVATE To request an
immediate activation of the
firmware component primed
for activation.

FID,

fw_seq_id,
Flags -
1. skip_cpu_rende

zvous

entry_point_addres
s
context_id

Flags -
1. Call_again

LFA_SUCCESS,

LFA_AUTH_ERROR,

LFA_NO_MEMORY,

LFA_DEVICE_ERROR,

LFA_WRONG_STATE,

LFA_BUSY,

LFA_ACTIVATION_FAIL
ED,

LFA_INVALID_PARAME
TERS

LFA_INVALID_ADDRES
S,

LFA_COMPONENT_WR
ONG_STATE

	Slide 1: TF-RMM Live Activation
	Slide 2: Live Firmware Activation overview
	Slide 3: TF-RMM live update
	Slide 4: Current TF-RMM carveout usage (on FVP)
	Slide 5: Naïve RMM update scenario
	Slide 6: TF-RMM changes to allow live activation
	Slide 7: Naïve RMM update scenario
	Slide 8: EL3-RMM communication changes : Rationale and details
	Slide 9: RMM based allocation complexities
	Slide 10: Complexities Continued
	Slide 11: EL3 assisted mem reserve from Realm carveout
	Slide 12: Proposed NUMA handling for local (PCPU) RMM data
	Slide 13: RMM_RESERVE_MEM
	Slide 14: Enhance Boot protocol for RMM
	Slide 15: LFA SMC Implementation in EL3
	Slide 16: LFA Flow – Firmware Discovery
	Slide 17: LFA Flow – Priming Firmware Component
	Slide 18: LFA Flow – Activating Firmware Component
	Slide 19
	Slide 20: Backup
	Slide 21: LFA SMC Table (1/3)
	Slide 22: LFA SMC Table (2/3)
	Slide 23: LFA SMC Table (3/3)

