arm

Design Discussion

ndre Przywara, Manish Badarkhe, Soby
athew

12/06/2025

Public © 2025 Arm 1

Live Firmware Activation overview

An Arm spec (DENQ147) describing discovery and activation of updated firmware components
Allows firmware updates without a reboot

Describes an interface between an LFA client and an LFA agent

LFA agent lives in EL3 runtime, so typically TF-A BL31

Defines SMCCC compliant functions:
o Detection: LFA VERSION, LFA FEATURES

o Firmware discovery: LFA GET INFO, LFA GET INVENTORY
o Firmware activation: LFA PRIME, LFA ACTIVATE, LFA CANCEL

Firmware activations might require CPU rendezvous
o To prevent accidental calls into the to-be-updated firmware
o To allow every CPU to (re-)initialise during the update process

Spec is not concerned about the image updates itself, just the activation

arm

Public © 2025 Arm 2

TF-RMM live update S

Early example of a live-updatable component —

Looks like a nice target, since it does not carry much state -
o VCPU and guest state memory belongs to normal world -
o Pointers are passed in on every RMI call
o Only a very few data structures to preserve: granule array, VMID array

T T 1
Mostly relays requests from normal world, no "life of its own" T F' RM M

Constraints: (shared) data structures must stay compatible
Expectation: Live updates only for small/minor revisions (fixes only?)

q rm Public© 2025 Arm 3

Current TF-RMM carveout usage (on FVP)

4G-36M 4GB-4M 4 GB
RMM .text
RMM .data
RMM .bss
RMM stacks TE-A
use
shared buffer /
(RMM-EL3 interface)
oM 4M 32M

arm

Public © 2025 Arm 4

Nalve RMM update scenario

4G-36M

4GB-4M

4 GB

B NN

O R R T

- original RMM .text
4 original RMM .data

4+ original RMM .bss
- original RMM stacks

I8 update RMM .text

" update RMM .data

1 update RMM .bss
update RMM stacks

shared buffer
(RMM-EL3 interface)

TF-A

usc

OM

arm

32M

Public © 2025 Arm 5

TF-RMM changes to allow live activation

RMM gets (very limited) support for memory reservation from EL3
o Only in the RMM setup phase
o Before the MMU gets enabled, so mappings stay fixed
o Only reservations, no freeing

Allows for keeping global data persistent
o S0 data can be shared quite naturally

- Allows for getting local memory for a particular core
o To address NUMA requirements

- Allows for sizing memory regions
o To scale with the number of cores
o To scale with the amount of DRAM

Per-CPU data structure as an anchor point
Contains pointers (addresses) to global data structures for all persistent data
Address of this per-CPU struct is passed between EL3 and RMM

a rm Public © 2025 Arm 6

Nalve RMM update scenario

4G-36M 4GB-4M 4 GB
v A = original RMM .text granule array
F -_,.-' . r -_,.-' F -.__I. N, .__I. , o
',f':: s ﬁ . st original RMM .data (allocated) \
S I ﬂ - original RMM .bss
:: '::, ’ L original RMM stacks HEAP area TF-A
vy » _. use
Ly : e :"-u.___-'- " S
’; f ’; “C W update RMM Ltext
Ry | vy SO
vy, ry . 1 update RMM .data
r -_,.-' .--.__. r -__.-) o M, .'-.
o ey «. %7 update RMM .bss
_::' :, ﬁ . >{ update RMM stacks shared buffer
yry. | v § (RMM-ELS3 interface)
oM slot A M slot B 32M

arm

Public © 2025 Arm 7

arm

EL3-RMM communication
changes:
Rationale and details

RMM based allocation complexities

- Design choice for LFA in RMM —
- Instead of migrating data from the old RMM instance to the new one during a live firmware update, the design
proposes reusing objects already allocated in the old RMM.

- This requires a separate memory pool, external to the RMM image itself, to store RMM state that must persist
across the update.

- An alternative approach is describing this pool of memory via manifest and let RMM manage the
memory which has some complexities.

- Bootstrapping complexity, particularly when Memory is needed before the C runtime is initialized.
- A solution is to use a temporary stack for the primary CPU during early initialization.

- Allocating memory for secondary CPUs before the MMU is enabled
- Mutual exclusion becomes an issue.
- Using locks (e.g., like bakery-locks) in this early stage is complicated.
- A cleaner approach: Have the primary CPU allocate and partition memory ahead of time for each
secondary, and pass this pre-allocated memory via a structured hand-off.

- Note that RMM would still need to cater for hot spare cores/redundant cores which are not used typically, but can
be brought online when a regular core fails. Typically these are hidden as platform specific implementation in EL 3.

a rm Public © 2025 Arm 9

Complexities Continued

- NUMA or multi-chip needs special handling
= EL3 would need to describe NUMA/Multi Chip topology to RMM

with the NUMA node information via manifest.
= NUMA node would describe Realm PAS carveout for use by RMM.

= RMM should use this data to allocate memory from the
appropriate node-local carveout.
= The primary CPU would need to preprocess and pass summarized
topology/memory data to the secondary CPUs in an assembly
friendly structure/table. The secondaries would need to look up this
table using MPIDR as a key.

- Need RMM to migrate allocation info for each pool to new

RMM or embed the same within the data poal.

= Chicken and egg situation if memory needs to be allocated prior to
init of memory allocation data in new RMM.

arm

memory@c00000 {
device type = "memory";

reg = <0x0 0xc00000 0x0 0x80000000>;

/* node 0 */
numa-node-id = <0>;

} .

memory@10000000000 {

device type = "memory";

reg = <0x100 0xO0 0x0 0x80000000>;

/* node 1 */
numa-node-id = <1>;

b

cpus {

#address-cells = <2>;
#size-cells = <0>;

cpu@Q0 {
device type = "cpu'";
compatible = "arm,armv8";
reg = <0x0 0x0>;
enable-method = "psci";
/* node 0 */
numa-node-id = <0>;

bi

cpu@l {
device type = "cpu";
compatible = "arm,armv8";

Y
cpu@2 {

reg = <0x0 Oxl1>;
enable-method = "psci";
numa-node-id = <0>;

device type = "cpu":
compatible = "arm,armv8";
reg = <0x0 0x2>;
enable-method = "psci";
numa-node-id = <1>;

i

cpu@3 {
device type = "cpu'";
compatible = "arm,armv8";

reg = <0x0 0x3>;
enable-method = "psci";
numa-node-id = <1>;

EL3 assisted mem reserve from Realm carveout

Using an EL3 service to reserve memory in the Realm PAS carveout
reduces design complexity and minimizes the need for platform-specific
implementations in RMM.

Hence the current proposal is to introduce an EL3 RMMD service to
"reserve"” memory from the Realm PAS carveout based on request from
RMM.
- There will be no free() support , hence overhead associated with
traditional memory mgmt is absent.
- EL3 will not map this memory in its own Stage 1 MMU nor try to
access this memory.

- Any misuse or incorrect handling of the allocation does not impact EL3
security.

The proposal is that RMM allocates all required memory as part of boot
- PCPU memory will be allocated as part of each individual CPU boot
- Global memory will be allocated during primary CPU boot.
- Failure in boot phase if the platform does not provision adequate memory.

arm

~uinte4 t reserve _mem(uinte4d t

size, uint64_t align)

{

uint64 t align mask = align
_1;
uintptr_t addr;

addr = (top_mem - size) &

~alignh mask;

if (addr <

RMM_PAYLOAD_LIMIT) {
return ©;

}

top_mem = addr;

return addr;

Public © 2025 Arm 11

Proposed NUMA handling for local (PCPU) RMM data

EL3 creates Realm PAS carveout in the memory

1 2 5 6 nodes.
‘) EL3 firmware, if it has support for NUMA, will locate
3 4 7 8 its local data to corresponding memory nodes.
When RMM makes a request to reserve memory for

e, its PCPU data, EL3 reserves memory Realm

| | | carveout local to the CPU which made the request.

ii | i - This can leverage NUMA framework in TF-A,

| ' | ' eliminating the need for EL3 to perform explicit runtime
topology lookups. As a result, the implementation will
be simple.

a rm Public © 2025 Arm 12

RMM RESERVE MEM

Input values
Name Register Bits Type Description
FID x0 [63:0] UInte4 Command FID
Size x1 [63:0] UlInt64 Size in bytes
Alignment X2 [63:56] UInt8 Alignment requirement in power of 2. A value
of 16 would return a 64 KB aligned base
address
Flags X2 [31:0] UlInt32 [0]: determine whether the allocation
should allocate from a pool close to the
calling CPU.
[31:1]: reserved
Output values
Name Register Bits Type Description
Result x0 [63:0] Ulnt64 Error code {E_ RMM _INVAL, E. RMM_UNK,
E_ RMM_NOMEM, E. RMM_OK}
Address x1 [63:0] UlInté4 PA of start of reserved mem

arm

Public © 2025 Arm 13

Enhance Boot protocol for RMM

struct global data {
uintptr t granules_array pa;

EL3 is expected to facilitate LFA of RMM.

RMM will maintain a structure for global and PCPU allocations. 3;
This will need to be passed from old RMM to new RMM.

Propose to add a "cookie™ in boot interface

- Cold boot uses [x0 — x3] , add x4 as cookie. struct per cpu data {
- Warm boot uses [x0], add x1 as cookie. ' uint128 t rmm_pauth_apia;
- On successful RMM boot, returns "cookie’ in x1 back to ELS3. L struct rmm_buffer alloc ctx *ctx;

bool simd state saved;

/* Add more per_cpu data here */
struct simd context ns _simd ctx;
bool ns_simd ctx_init _done;

EL3 keeps the ‘cookie’ on per-CPU basis and passes it back to
RMM for next boot — either next warmboot or LFA update boot.
- Initial value of cookie is 0.

RMM implementation detail:
- RMM populates the global and PCPU allocations and passes address |
of per_cpu_data object as cookie back to EL3 when boot completes. |
- If the value of the cookie is non-zero, RMM will skip initialization and
bootstrap from the provided per_cpu_data structure

char ns_state_reserve[NS STATE];
struct global data *glob;
__aligned(PCPU_DATA_SIZE);|

a rm Public © 2025 Arm 14

arm [

LFA SMC Implementation
in EL3

LFA Flow — Firmware Discovery

Host CPUO Host CPU1+ EL3 CPUO EL3 CPUl+
(Normal World) (Normal World) {Secure/Root World) (Secure/Root World) | Platform Implementation I | Component implementation I

runtime_svc_init()

| std_svc_setup()

Ifa setup()

i

Ifa_initialize_components()

i

plat_Ifa_get_components()

-
-~
e return lfa_num_components J

Stash component info

: Firmware Store Update r

LFA GET INFO(selector = 0)

>

-« LFA.SUCCESS, Ifa_num_components

........................ fPercccnsivecenssvssssevee

loop / [for each fw_seq id < Ifa_num_components]
' LFA_GET_INVENTORY(fw_seq_id)

>
is_plat_Ifa_activation_pending(fw_seq_id)

-
> 1

ing_fl
pending flag e il

. Update flags[], UUID

LFA_SUCCESS, flags[], UUID

q rm Public © 2025 Arm 16

LFA Flow — Priming Firmware Component

LFA_PRIME(fw_seq_id)

ﬁ Priming Firmware Components }
>

| Sanity checks

-ID in range
- Activator exists

- Not already activated or primed

plat_Ifa_load_auth_image(fw_seq_id)

Auth success

component_prime_handler

Load, Auth, Measure, Stash

SUCCESS

LFA_SUCCESS, flags(]
(... I

arm

Public © 2025 Arm 17

LFA Flow — Activating Firmware Component

arm

LFA_ACTIVATE(fw seq_id)

Y

:Activatinn Phase - CPUO Primary :

| Sanity checks
-IDin range
- Mot already activated

- Matches current component in progress
- Prime is complete

extend_measurement(fw_seq_id)

SUCCESS 5
component_activate primary >
SUCCESS i
.(Se_:lctivation_pending = false
LA SUCCRSS
= %Activatiun Phase - CPU1+ Secondary :
LFA_ ACTIWATE(fw seq id) >
compeonent_secondary_init .
Hold CPU in secondary init IT
until CPUO completes activation
 Secondary init SUCCESS, i
(LTASUCCESS B e
Host CPUO Host CPUL+ EL3 CPUD EL3 CPUL1+ Platform Implementation Component Implementation
(Normal World) (Normal World) (Securef/Root World) (Secure/Root Weorld)

Public © 2025 Arm

18

Merci
Danke
Gracias
Grazie

1 151
HYDHED
Asante
Thank You
ZEAFSEL| Cf
b Yo ddiq
I Kiitos

arm

arm

Backup

———————
v N e (
— & ~.C -
P
L o N —
!

LFA SMC Table (1/3)

SMC Name

Description

Outputs

Return Codes

LFA_VERSION

Retrieve the LFA
version

None

Major, Minor version

LFA_SUCCESS,

LFA NOT_SUPPO
RTED

number of
components under
the supervision of
LFA

Ifa_info_selector=0

LFA FEATURES Use to retrieve the [FID None LFA SUCCESS,
- existence of
functions in the LFA NOT_SUPPO
LFA ABI. RTED
LFA GET INFO Retrieves the FID Ifa_num_components |LFA SUCCESS

LFA_GET_INVENTORY

To discover the
Firmware
component
managed by LFA

FID, .
fw_seq_id

UUID_0,
UUID 1,
Flags -

Activation capable
Activation pending
May reset cpu
Cpu_rendezvous_op
tional

AW~

LFA_SUCCESS,

LFA _INVALID_PAR
AMETERS,

LFA_WRONG_STA
TE. ™ -

arm

Public © 2025 Arm 21

LFA SMC Table (2/3)

SMC Name Description Inputs Outputs Return Codes
LFA PRIME To preP_are_ platform for FID, Flags - LFA SUCCESS,
live activation of the given _ _
component fw_seq_id 1. call_again |LFA AUTH_ ERROR,

LFA_NO_MEMORY,
LFA_DEVICE_ERROR,
LFA. WRONG_STATE,

LFA BUSY,
LFA PRIME_FAILED
LFA_CANCEL |To abort firmware _ FID, LFA_SUCCESS,
activation process during _
prime or activate stages |fw_seq_id LFA BUSY,

LFA_INVALID_PARAMETERS

q rm Public © 2025 Arm 22

LFA SMC Table (3/3)

SMC Name
LFA ACTIVATE

Description

Torequestan
immediate activation of the
firmware component primed
for activation.

Inputs
FID,
fw_seq_id,
Flags -

1. skip_cpu_rende
Zvous

entry _point_addres
S
context id

Outputs

Flags -
1. Call_again

Return Codes
LFA SUCCESS,

LFA_AUTH_ERROR,
LFA_NO_MEMORY,
LFA_DEVICE_ERROR,
LFA_ WRONG_STATE,
LFA_BUSY,
LFA_ACTIVATION FAIL

LFA INVALID_PARAME
TERS B

LFA_INVALID_ADDRES

I

LFA COMPONENT WR
ONG_STATE -

arm

Public © 2025 Arm 23

	Slide 1: TF-RMM Live Activation
	Slide 2: Live Firmware Activation overview
	Slide 3: TF-RMM live update
	Slide 4: Current TF-RMM carveout usage (on FVP)
	Slide 5: Naïve RMM update scenario
	Slide 6: TF-RMM changes to allow live activation
	Slide 7: Naïve RMM update scenario
	Slide 8: EL3-RMM communication changes : Rationale and details
	Slide 9: RMM based allocation complexities
	Slide 10: Complexities Continued
	Slide 11: EL3 assisted mem reserve from Realm carveout
	Slide 12: Proposed NUMA handling for local (PCPU) RMM data
	Slide 13: RMM_RESERVE_MEM
	Slide 14: Enhance Boot protocol for RMM
	Slide 15: LFA SMC Implementation in EL3
	Slide 16: LFA Flow – Firmware Discovery
	Slide 17: LFA Flow – Priming Firmware Component
	Slide 18: LFA Flow – Activating Firmware Component
	Slide 19
	Slide 20: Backup
	Slide 21: LFA SMC Table (1/3)
	Slide 22: LFA SMC Table (2/3)
	Slide 23: LFA SMC Table (3/3)

